
MODULE 1 January 5, 2023

ROTATIONS & NUTRIENT MANAGEMENT

www.organicdevelopmentfund.org

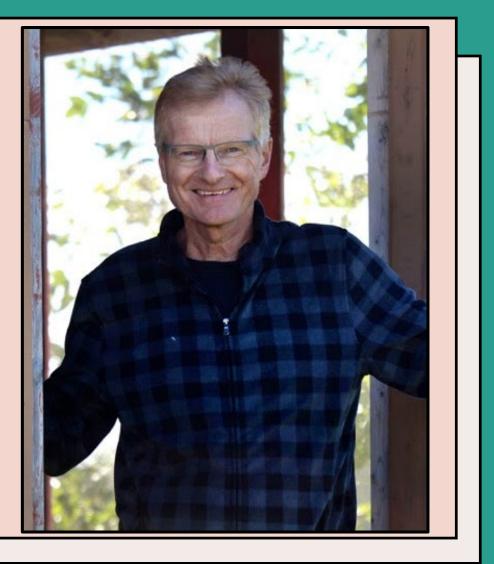
PRAIRIE ORGANIC DEVELOPMENT FUND

The Prairie Organic Development Fund

- Investment platform established to develop organic agriculture and marketing in the Canadian Prairies
- Builds resilience in the sector by investing in
 - organic provincial associations (Capacity Fund); and
 - high impact programs (Innovation Fund) related to marketing, research, policy, education and capacity development that have broad public benefit to the organic sector.

www.organicdevelopmentfund.org

The Prairie Organic Development Fund is grateful for the support of:


Platinum Sponsors: Grain Millers & SaskWheat Development Commission Silver Sponsors: Nature's Path, The Bauta Family Initiative on Canadian Seed Security & PHS Organics Friend: F.W. Cobs Company

We gratefully acknowledge funding from the Canadian Agricultural Partnership.

www.organicdevelopmentfund.org

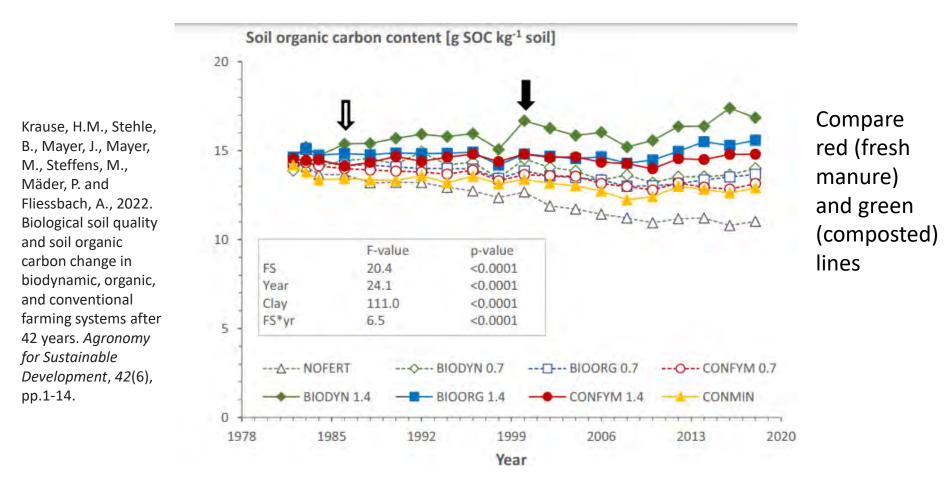
Martin Entz, Ph.D. Department of Plant Science Natural Systems Agriculture Lab University of Manitoba

umanitoba.ca/outreach/naturalagriculture/

www.organicdevelopmentfund.org

Agronomist Training Learning Format

Day 1: Designing cropping systems with a focus on nutrient management


Day 2: Crop establishment and seeding systems, tillage, and weed control

Day 3: Pest management with focus on diseases, insects (and weeds)

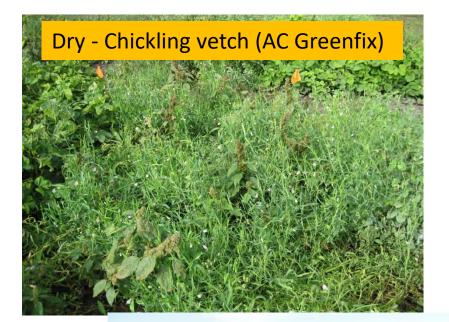
Day 4: Soil management for organic production: Putting theory into practice

Day 5: The questions raised on days 1-4 will all be answered. A written answer will be provided for each question. Participants can raise additional questions in the discussion period.

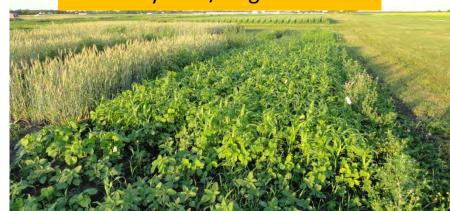
<u>Question</u>: What is better, fresh manure or composted manure? <u>My answer</u>: From P perspective, no difference. From information below, composting manure resulted in more soil organic matter – after less than 10 years

Let's get started: Crop/plant options for organic production

- Legumes
 - Required to add N
- Cereals
- Oilseeds
- Other grains
 - eg., buckwheat
- Forages
 - Perennial
 - Annual
- Cover crops
- Flower/pollinator strips
- Shelterbelt trees



Legumes – critical to supply nitrogen



N₂

Hot – Soybean/sorghum sudan

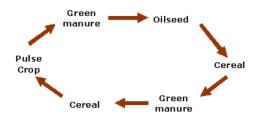
http://www.pivotandgrow.com/resources/production/green-manures/module-1-choosinga-green-manure/#1467244573285-63e76f6c-cf98

Red clover green manure

Sweet clover green manure

Traditional row crops in organic production in Quebec

Small grains in Ontario organic corn-soy system



Crop/plant options for organic production

- Legumes
 - Required to add N
- Cereals
- Oilseeds
- Other grains
 - eg., buckwheat
- Forages
 - Perennial
 - Annual
- Cover crops
- Flower/pollinator strips
- Shelterbelt trees

SE Saskatchewan	Alberta	Manitoba	PEI	Ontario	Quebec
Alfalfa seed 3 years	Green manure (cereal/pulse)	Green manure (grazed)	Red clover green manure	3 years legume/grass forage	Soybean
Hemp	Fall rye	Wheat or flax	Spring wheat	Winter canola	Winter wheat/pea or clover cover crop
Flax (underseeded to alfalfa)	Food grade pea/oat intercrop	Lentil or pea	Soybeans	Spelt	Corn (ryegrass cover crop interseeded)
or	Green manure (cereal/pulse)	Alfalfa hay (2 years	Pea/barley intercrop	Soybean	
Green manure (year 1)	Spring wheat	Wheat or flax	Oats underseeded to red clover	Oat/pea grain	
Spring wheat (year 2)	Pea/barley intercrop (feed)	Oats			
Two different rotations depend on soils	Green manure every 3 rd year	High diversity. Livestock integration	Diversity of legume species	Winter and spring seeded grains	Manure used to supply some N

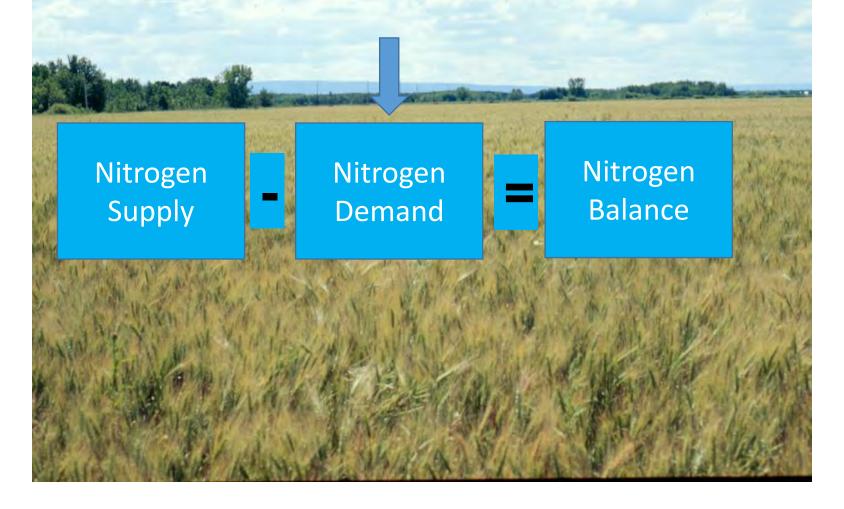
Organic Crop Yields

Table 1. Yields of green manure and grain crops in the Organic Crops Field Laboratory, Carman, MB. Each parcel of land, or rotation block, can be followed through the table by following a specific colour. Where two crops are listed for a particular year, those crops were grown on two different parts of that rotation block.

	`	Year 1	Year 2	Year 3	Yea	ır 4		Year 5	Yea	ar 6
	Gree	en Manure	Cereal	Pulse	Hay / gree	n manure	C	Dilseed	Cereal	
	Pea / oat	Chickling vetch	Wheat	Soybean	Berseem clover / alfalfa	Barley or oat / hairy vetch	Flax	Buckwheat	Fall rye	Oats
	lb/ac	lb/ac	bu/ac	bu/ac	lb/ac	lb/ac	bu/ac	bu/ac	bu/ac	bu/ac
2004*	4804	-	-	-	-	-	-	-	-	-
2005	-	3721 (29% weeds)	34	32.5	2435 (65% weeds)	-	18	-	-	18
2006	-	3101 (42% weeds)	50	23	4375 (70% weeds)	-	24	-	-	73
2007	7566	-	43	32	-	7050	16	9	60	-
2008	5164	-	54	26.5	-	6227	18	-	53	51
2009	5489	-	60	28	-	7038	33	-	26	107
2010	3499		49	32		8064	24		-	106
Average	5304	3411	48	29	3405	7095	22	9	46	71

*In 2004, a pea/oat green manure was grown on all six rotation blocks.

Rotations must consider nutrient budgeting


Entz, M.H., Guilford, R. and Gulden, R., 2001. Crop yield and soil nutrient status on 14 organic farms in the eastern portion of the northern Great Plains. *Canadian Journal of Plant Science*, *81*(2), pp.351-354.

	Manito	ba (kg/ha)	Australia (mg/kg)		
	Organic	Conv'l	Organic	Conv'l	
Nitrogen	92.5	70			
Phosphorous	15.5	30	14.2	27.2	
Potassium (Australia - meq/kg)	654	700	1.58	1.69	
Sulfur	101	60	16.4	26.9	
Copper			0.70	0.57	
Zinc			0.85	0.56	
Iron			14	15	

N Budgets for Organic Rotations

Rough N contributions from legumes

Cropping system

Annual green manures and legume cover crops

Amount of N contributed

2.5% of above ground dry matter is fixed N

Perennial alfalfa

130 lb/acre if hay stand 2 years or longer

Grain legume

Grain Legume	N addition to following crop
Pea, lentil, fababean	10-15 kg N/1000 kg of seed harvested
Chickpea	3 kg N/1000 kg of seed harvested
Dry bean	1 kg N/1000 kg of seed harvested
Soybean	1 kg N/1000 kg of seed harvested

Rule of thumb 4000 lb/acre (2.5% N = 100 lb/ac 60% available in first year = 60 lb/acre 40% available in second year = 40 lb/ac

Anglade, J.A., Billen, G., and Garnier, J. 2015. Relationships for estimating N2 fixation in legumes: incidence for N balance of legume-based cropping systems in Europe. Ecosphere, 6: 37. doi:10.1890/ES14-00353.1.

Full season legume green manure

Crop demand

Crop	Ν	P ₂ 0 ₅	K ₂ 0	S
Cr	op nutrient	removal (lk	o/bushel)	
Wheat 10% protein	1.2	0.5	0.35	0.1
12%	1.5	0.5	0.35	0.1
14%	1.9	0.5	0.35	0.1
Barley	1.1	0.36	0.35	0.07
Oat	.96	0.25	0.18	0.06
Corn	0.75	0.37	0.27	
Pea	2.3	0.7	0.7	0.14
Flax	2.12	0.6	0.6	0.2
Sunflower (lb/lb)	0.026	0.008	0.006	0.002
Alfalfa (lb/ton)	56	15	60	5
Bromegrass (lb/t)	36	13	59	3

A **bushel of corn removes** about 0.75 **lb nitrogen**, 0.37 **lb** P2O5, and 0.27 **lb** K2O from the soil. A **bushel** of soybeans will **remove** 4 **lbs nitrogen**, 0.8 **lb** P2O5, 1.4 **lbs** K2O (Figure 1).

Crop nutrient removal: Wheat grain example

30 bushels per acre x *1.9 lb N/bu = 57 lb N removed

48 bushels per acre x **1.5 lbN/bu = 72 lb N removed

*14% protein **12% protein

Crop	Ν	Ρ	K	S			
Nutrient balance (lb/ac)							
Green manure pea, lentil or c. vetch 4000 lb/ac @2.5% N	+100						
Wheat (30 bu/ac)	-57						
Flax (14 bu/ac)	-30						
Long-term balance	+13						

Green manure-wheat-flax-oat

Crop	Ν	Ρ	K	S		
Nutrient balance (lb/ac)						
Green manure pea, lentil or c. vetch 4000 lb/ac @2.5% N	+100					
Wheat (30 bu/ac)	-57					
Flax (14 bu/ac)	-30					
Oat (50 bu/ac)	-48					
Long-term balance	-35					

SE Saskatchewan	Alberta	Manitoba	PEI	Ontario	Quebec
Alfalfa seed 3 years	Green manure (cereal/pulse)	Green manure (grazed)	Red clover	3 vears	Soybean
Hemp	Green manure (cereal/pulse) No farmer crops afte	er a legume	phase	er canola	Winter wheat/pea or clover cover crop
Flax (underseeded to alfalfa)	Food grade pea/oat intercrop	Lentil or pea	Soybeans	Spelt	Corn (ryegrass cover crop interseeded)
or	Green manure (cereal/pulse)	Alfalfa hay (2 years	Pea/barley intercrop	Soybean	
Green manure (year 1)	Spring wheat	Wheat or flax	Oats underseeded to red clover	Oat/pea grain	
Spring wheat (year 2)	Pea/barley intercrop (feed)	Oats			
Two different rotations depend on soils	Green manure every 3 rd year	High diversity. Livestock integration	Diversity of legume species	Winter and spring seeded grains	Manure used to supply some N

Crop	Ν	Р	K	S
Ν	lutrient balance (lb/a	ac)		
Green manure pea, lentil or c. vetch 4000 lb/ac @2.5% N	+100			
Wheat (30 bu/ac)	-57			
Flax (14 bu/ac)	-30			
Oat (50 bu/ac)	-48			
Long-term balance	-35			
		•		
	icit filled from			

Rough N contributions from legumes

Cropping system

Amount of N contributed

Annual green manures and legume cover crops

2.5% of above ground dry matter is fixed N

Perennial alfalfa

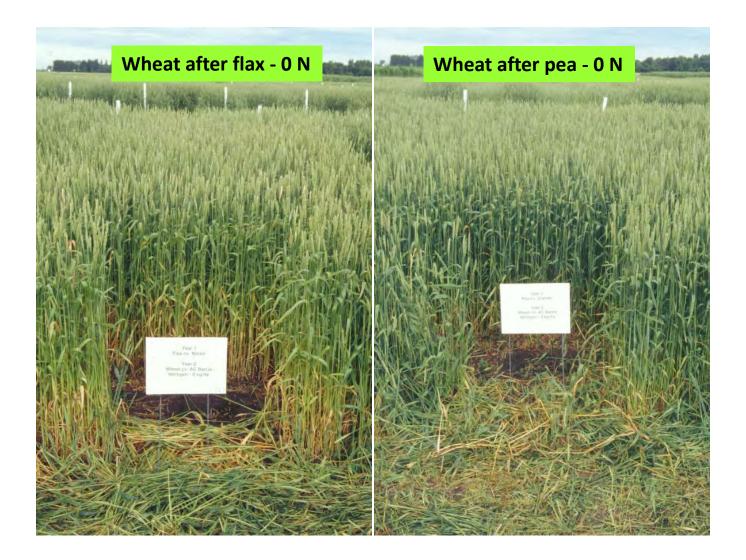
130 lb/acre if hay stand 2 years or longer

Grain legume

Grain Legume	N addition to following crop
Pea, lentil, fababean	10-15 kg N/1000 kg of seed harvested
Chickpea	3 kg N/1000 kg of seed harvested
Dry bean	1 kg N/1000 kg of seed harvested
Soybean	1 kg N/1000 kg of seed harvested

Crop	N	Р	K	S
	Nutrient balance (lb/a	ac)		
Green manure pea, lentil or c. vetch 4000 lb/ac @2.5% N	+100			
Wheat (30 bu/ac)	-57			
Soybean (30 bu/ac)	*+3			
Oat (50 bu/ac)	-48			
Long-term balance	-2			

*Manitoba. N contribution in Eastern Canada likely higher


Crop	Ν	Р	K	S
1	Nutrient balance (Ib/a	ac)		
Green manure pea, lentil or c. vetch 4000 lb/ac @2.5% N	+100			
Wheat (30 bu/ac)	-57			
Peas (30 bu/ac)	+20			
Oat (50 bu/ac)	-48			
Long-term balance	+20	¥ .		

Because soil has a C:N ratio of about 10, increases in soil N allow for increases in soil C. Surplus N added to soil organic matter

Example of N benefit of a pea grain crop...

Pulse crop researcher, Kristen McMillan, (presenter) has demonstrated that certain edible dry bean varieties do not require any supplemental N fertilizer. This is a "Game changer" for organic dry bean production.

Reality check: What are farmers experiencing?

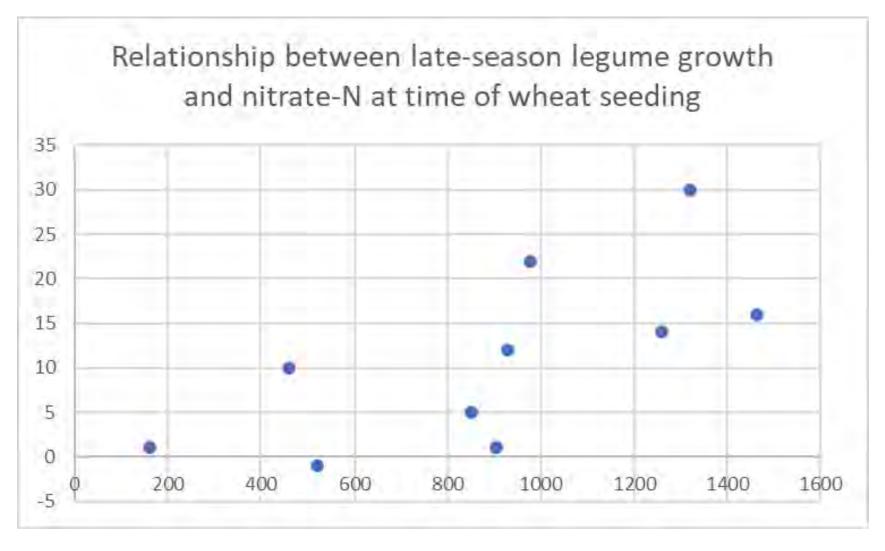
Plant biomass production was highly variable, ranging from 1736 to 11 744 kg/ha, with a mean of <u>4572</u> kg/ha.

Weed proportion in total biomass averaged 18%

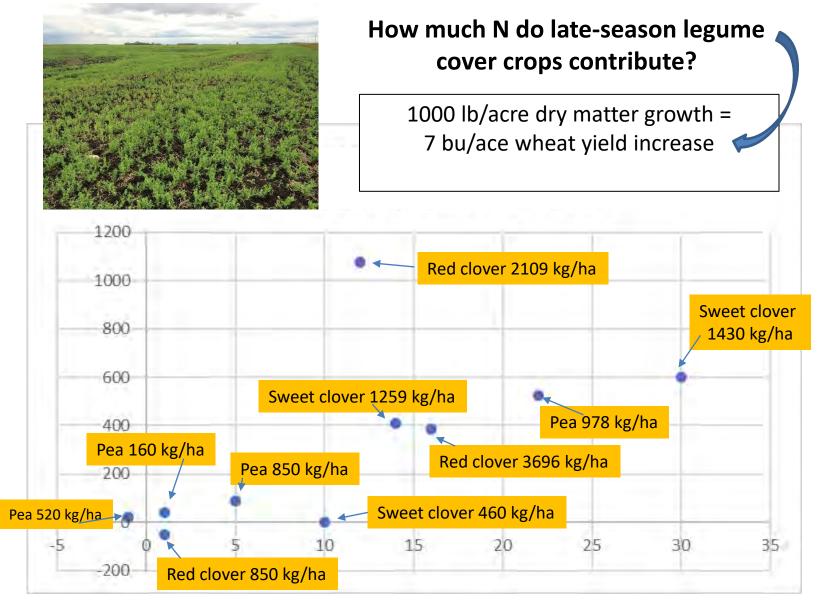
Estimates of N fixation ranged from near zero to over 300 kg N/ha, with a mean and median of 71 and 47 kg N/ ha, respectively

Legume species ^a	Other species ^a	Site	Province		Soil properties			Aboveground biomass			Biomass proportion	
				Year	pH	Organic matter (%)	Olsen P (mg kg ⁻¹)	Total (kg ha ⁻¹)	Legume (kg ha ⁻¹)	Weeds (kg ha ⁻¹)	Legume (%)	Weed (%)
Alfalfa	_	Kamsack	SK	2015	7.5	7.0	4	4148	4065	83	98	2
Alfalfa	0	Kamsack	SK	2015	7.8	3.3	4	2574	1776	798	69	31
Alfalfa	Forage grasses	Melville	SK	2015	8.0	4.0	3	4221	1899	17	45	0.4
Alfalfa	Forage grasses	Melville	SK	2016	8.2	4.1	6	3504	1577 ^b	0 ^b	45 ^b	0 ^b
Alfalfa	Forage grasses	Melville	SK	2016	8.0	3.7	7	3184	1433 ^b	0 ^b	45 ^b	0 ^b
Alfalfa	Forage grasses	Carman	MB	2016	5.6	4.0	17	5740	3214	287	56	5
Red clover		Brandon 1	MB	2015	7.6	6.7	3	3826	1798	383	47	10
Red clover	-	Notre Dame	MB	2016	7.5	3.0	3	7321	7175	146	98	2
Red clover	-	St. Claude	MB	2016	7.6	14	5	2580	1445	206	56	8
Red clover	_	St. Claude	MB	2016	7.7	17	4	4090	2290	123	56	3
Red clover, hairy vetch	Fall rye	Kenton	MB	2015	8.3	4.6	3	2160	1080	432	50	20
Red clover, hairy vetch	Fall rye	Kenton	MB	2016	8.0	5.4	3	4520	2983	1175	66	26
Red clover, sweet clover	-	Nesbitt	MB	2015	8.0	4.8	4	3652	2739	913	25	75
Sweet clover	_	Austin	MB	2015	8.1	14	9	5583	5136	447	92	8
Sweet clover	-	Brandon 1	MB	2016	7.0	6.6	3	4040	2101	1939	52	48
Sweet clover	<u> </u>	Brandon 1	MB	2016	7.6	6.2	3	3704	3074	630	83	17
Sweet clover	_	Miami	MB	2016	7.0	4.3	3	6176	5188	988	84	16
Sweet clover	_	Somerset	MB	2015	6.4	4.5	18	1988	954	1034	48	52
Fababean	Barley	Brandon 2	MB	2015	7.4	7.0	3	2335	327	1401	14	60
Fababean	Oat	Winkler	MB	2015	8.3	2.7	61	6038	1449	604	24	10
Fababean	Oat, barley	Carman	MB	2016	5.5	3.5	24	5100	1071	714	21	14
Pea	Barley	Brandon 2	MB	2015	8.2	3.8	4	3114	1090	1152	35	37
Pea	Oat	Brandon 2	MB	2016	7.8	6.2	3	5003	2852	1201	57	24
Pea	Oat	Nesbitt	MB	2015	7.8	5.7	4	3763	903	1242	24	33
Pea	Oat	Nesbitt	MB	2016	6.9	6.2	5	3648	876	292	24	8
Pea	Oat	Notre Dame	MB	2015	8.0	4.0	7	1736	1163	278	67	16
Pea	Oat	Notre Dame	MB	2015	7.5	5.2	5	3362	807	1345	24	40
Pea	Oat	Winkler	MB	2015	8.3	3.2	44	6898	1311	414	19	6
Pea	Oat	Winkler	MB	2016	8.1	2.4	36	3995	2637	120	66	3
Pea	Oat	Marquette	MB	2016	7.8	6.8	13	3701	3183	0	86	0
Pea	Oat	Marquette	MB	2016	7.9	5.0	6	5589	2627	168	47	3
Pea	Oat	Carman	MB	2016	5.5	3.5	24	4175	1336	459	32	11
Pea, hairy vetch	Oat, buckwheat	St. Claude	MB	2015	8.4	3.4	3	5202	1196	1769	23	34
Pea, hairy vetch	Oat, millet	Brandon 2	MB	2016	8.1	7.2	4	4600	506	3266	11	71
Pea, hairy vetch	Oat, radish, sunflower	Brandon 1	MB	2016	7.7	7.0	6	3561	285	1709	8	48
Hairy vetch	Barley	Carman	MB	2015	5.5	3.3	10	9581	8144 ^b	479 ^b	85 ^b	5 ^b
Hairy vetch	Barley	Carman	MB	2016	5.5	3.5	24	4300	1290	473	30	11
Hairy vetch	Barley	Glenlea	MB	2015	7.8	6.5	18	11 744	10 570 ^b	587 ^b	90 ^b	5 ^b
Hairy vetch	Barley	Glenlea	MB	2016	7.5	6.5	29	9038	8134 ^b	452 ^b	90 ^b	5 ^b

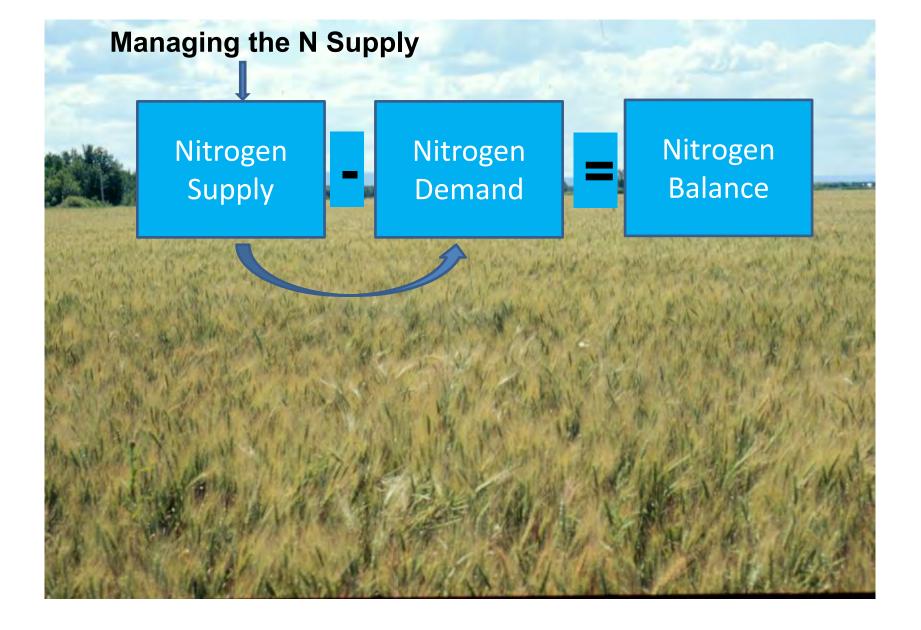
Can. J. Plant Sci. 99: 772–776 (2019)


Table 1. Biomass and nutrient concentration properties of 41 green manures in the eastern prairie region of Canada

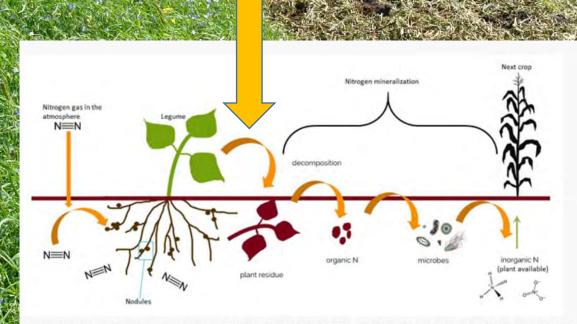
What about late season cover crops?


144

Cicek, H., et al 2014. Productivity and nitrogen benefits of late-season legume cover crops in organic wheat production. *Canadian Journal of Plant Science*, *94*(4), pp.771-783.



Late season legume growth (kg/ha)



Increase in soil N at wheat seeding the year after legume cover (kg/ha)

Cicek, H., et al 2014. Productivity and nitrogen benefits of late-season legume cover crops in organic wheat production. *Canadian Journal of Plant Science*, *94*(4), pp.771-783.

Terminating green manures -starts the N mineralization process in soil

Nitrogen cycling with a legume green manure. Figure modified slightly from that kindly provided by Dr. Julie Grossman and Sharon Perrone, University of Minnesota.

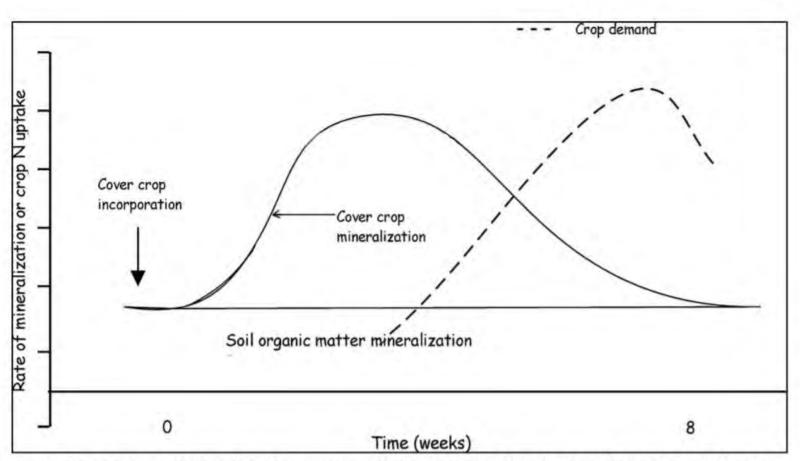


Figure 6. Timing of nitrogen (N) mineralization from cover crop residue in relation to crop N uptake (adapted from Gaskell et al., 2006). From Gaskell, M., and R. Smith. 2007. "Nitrogen Sources for Organic Vegetable Crops." HortTechnology October-December 2007 vol. 17 no. 4, 431-441) Note: Soil temperature plays an important role in the rate of N mineralization from soil organic matter.

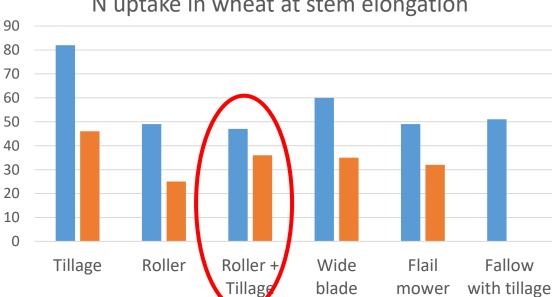
file:///C:/Users/mentz/Downloads/Nutrient-Management-in-Organic-Systems-Western-States-Implementation-Guide.pdf

How does termination method affect:

- N release
- Weeds

Vaisman, I., Entz, M.H., Bamford, K.C. and Cushon, I., 2014. Green manure species respond differently to blade rolling. *Can J Plant Sci*, 94:1507-1511.

Vaisman, I., Entz, M.H., Flaten, D.N. and Gulden, R.H., 2011. Blade roller–green manure interactions on nitrogen dynamics, weeds, and organic wheat. *Agronomy Journal*, *103*:879-889.



()

Podolsky, K., Blackshaw, R.E. and Entz, M.H., 2016. A comparison of reduced tillage implements for organic wheat production in western Canada. *Agronomy Journal*, *108*:2003-2014.

(as % of total dry matter)

Lethbridge Carman

N uptake in wheat at stem elongation

Cover crop: Grown for multiple purposes including adding N after a cereal crop, reducing soil erosion and increasing soil biological activity.

Catch crop: Grown specifically to stop N losses

Catch crops seeded in early August after green manure termination with grazing. Image taken in October the same year

> Radish (and all brassicas) are good "N catch and release" crops

Barley

Tillage radish

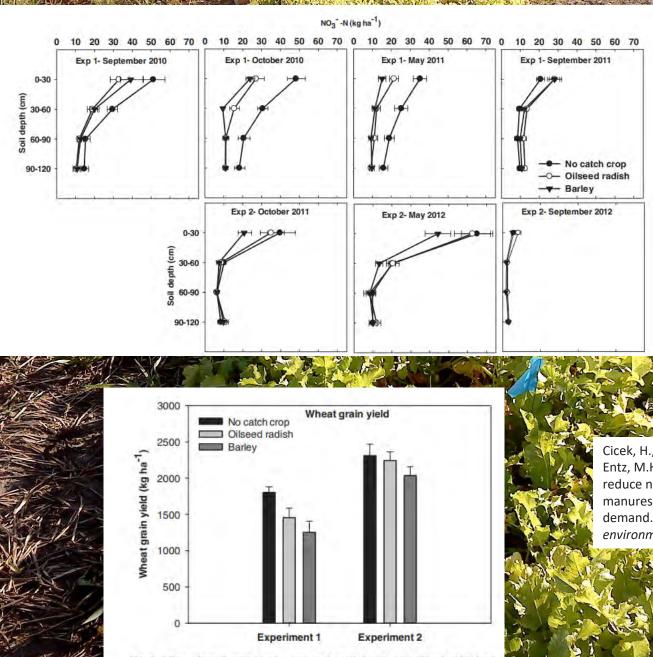


Fig. 4. Effect of catch crop species (no catch crop, barley and oilseed radish) on wheat grain yield for experiments 1 and 2. Vertical bars are standard errors.

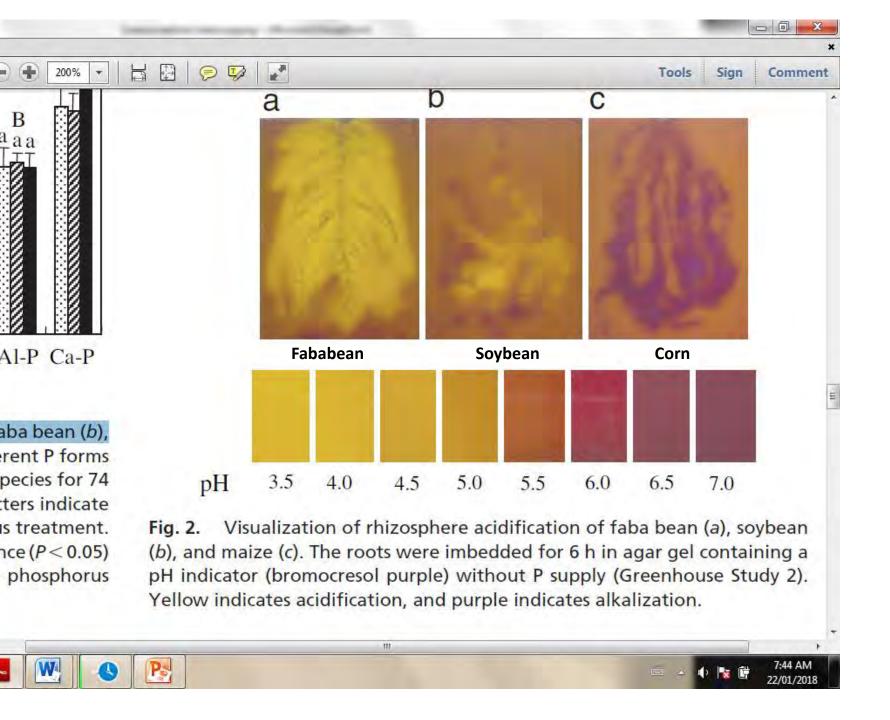
Cicek, H., Martens, J.R.T., Bamford, K.C. and Entz, M.H., 2015. Late-season catch crops reduce nitrate leaching risk after grazed green manures but release N slower than wheat demand. *Agriculture, ecosystems & environment, 202*, pp.31-41.

Nutrients other the Nitrogen

Crop demand

Crop	Ν	P ₂ 0 ₅	K ₂ 0	S				
Crop nutrient removal (lb/bushel)								
Wheat 10% protein	1.2	0.5	0.35	0.1				
12%	1.5	0.5	0.35	0.1				
14%	1.9	0.5	0.35	0.1				
Barley	1.1	0.36	0.35	0.07				
Oat	.96	0.25	0.18	0.06				
Rye	1.22	0.33	0.33	0.22				
Pea	2.3	0.7	0.7	0.14				
Flax	2.12	0.6	0.6	0.2				
Sunflower (lb/lb)	0.026	0.008	0.006	0.002				
Alfalfa (lb/ton)	56	15	60	5				
Bromegrass (lb/t)	36	13	59	3				

Crop	N	Р	K	S
	Nutrient balance (lb/ac)		1	<u> </u>
Green manure pea, lentil or c. vetch 4000 lb/ac @2.5% N	+100	5	5	5
Wheat (30 bu/ac)	-57	-15	-12.6	-3
Flax (14 bu/ac)	-30	-16.5	-9	-3
Long-term balance	+13	-31.5	-19.6	-6


After 12 years of organic, grain organic only system had lots of P; green manure-grain system had more available P in organic than conventional; and forage-grain system had low P in organic. Carkner et al. 2020.

Inputs	N^1	\mathbf{P}^2
Conventional	32	46
Organic	22	33
Conventional	29	²⁴ Green manur
Organic	31	37 increased P
Conventional	81	24
Organic	37	11
	0.0024	0.0020
	0.0024	0.0020
	0.0093	0.1899
	0.0158	0.0153
-	Organic Conventional Organic Conventional	Organic22Conventional29Organic31Conventional81Organic370.00240.0093

Table 1. Soil nutrient status (kg ha-1) for the Glenlea long-term cropping systems study flax test crop in 2003.

¹sampling depth 0 to 60 cm

²sampling depth 0 to 15 cm

After 12 years of organic, grain organic only system had lots of P; green manure-grain system had more available P in organic than conventional; and forage-grain system had low P in organic. Carkner et al. 2020.

				うきろ
Rotation	Inputs	N^1	\mathbf{P}^2	2
Annual	Conventional	32	46	- VAXA
	Organic	22	33	La YGO
Green Manure	Conventional	29	²⁴ Gre	en manure
	Organic	31	37 incr	reased P
Forage	Conventional	81	24	
	Organic	37	11 Alfa	lfa hay reduced P
Rotation (R)		0.0024	0.0020	
Inputs (I)		0.0093	0.1899	
R x I		0.0158	0.0153	
Isompling depth 0 to 60	am			

Table 1. Soil nutrient status (kg ha-1) for the Glenlea long-term cropping systems study flax test crop in 2003.

¹sampling depth 0 to 60 cm

²sampling depth 0 to 15 cm

Hypothetical rotation: Grains and 3 years alfalfa

Crop	N	P ₂ 0 ₅	K ₂ 0	S
	Nutrient balance (lb/ac))	•	
Alfalfa hay (4 ton/acre)	+130	-144	-540	-60
Wheat (34 bu/ac)	-64.5	-19	-14.2	-3
Flax (15 bu/ac)	-30	-16.5	-9	-3
Oat (50 bu/ac)	-45	-12.5	-9	-3
Balance	-9.5	-162	-572	-69

	Cro	p demand			
Сгор	Ν	P ₂ 0 ₅	K ₂ 0	S	
	Crop nutrien	t removal (lb/	bushel)		
Wheat 10% protein	1.2	0.5	0.35	0.1	
12%	1.5	0.5	0.35	0.1	
14%	1.9	0.5	0.35	0.1	
Barley	1.1	0.36	0.35	0.07	
Oat	.96	0.25	0.18	0.06	
Rye	1.22	0.33	0.33	0.22	
Pea	2.3	0.7	0.7	0.14	
Flax	2.12	0.6	0.6	0.2	
Sunflower (lb/lb)	0.026	0.008	0.006	0.002	
Alfalfa (lb/ton)	56	15	60	5	
Bromegrass (lb/t)	36	13	59	3	

N	P ₂ 0 ₅	K ₂ 0	S
Nutrient balance (lb/	/ac)		
+160	-25	-108	-12
-64.5	-19	-14.2	-3
-30	-16.5	-9	-3
-45	-12.5	-9	-3
+20.5	-73	-140.2	-21
	Intrient balance (lb/ +160 -64.5 -30 -45	Autrient balance (lb/ac) +160 -25 -64.5 -19 -30 -16.5 -45 -12.5	Intrient balance (lb/ac) +160 -25 -108 -64.5 -19 -14.2 -30 -16.5 -9 -45 -12.5 -9 Image: Constraint of the state o

How do I know if I have enough soil P?

- When soil test P below 5 PPM, you know crops will be deficient
- When soil test P above 10 PPM, you know crops will be OK
- Problem is when soil test P is between 5 and 10 PPM.

When soil test between 5 and 10, use plant tissue analysis to assess P

Why the green manure crop?

Legume is not limited by N – more sensitive to other nutrient deficiencies

Dr. Joanne Thiessen Martens, Dept Soil Science, University of Manitoba

Green Manure Bioassay: Phosphorus

0.50 0.40 0.30 0.20 0.10 0.00 0 20 40 60 80 Soil Olsen P (ppm)

Soil P vs. Plant P concentration

Thiessen Martens et al. Can J Plant Sci 2019

7 of 28 fields between 5-10 ppm P

P value should be above 2.0 ppm

Table 1. Biomass and nutrient concentration properties of 41 green manures in the eastern prairie region of Canada.

				Soil properties					Biomass proportion		Plant tissue nutrient concentration				 N fixation 		
Legume species ^a	Other species ^a	Site	Province	Year	рН	Organic matter (%	Olsen P (mg kg ⁻¹)	Total (kg ha ⁻¹)	Legume (kg ha ⁻¹)	Weeds (kg ha ⁻¹)	Legume (%)	Weeds (%)	N (g kg ⁻¹ dry matter)	P (g kg ⁻¹ dry matter)	K (g kg ⁻¹ dry matter)	S (g kg ⁻¹ dry matter)	estimate
Alfalfa		Kamsack	SK	2015	7.5	7.0	4	4148	4065	83	98	2	24	11	17	19	130
Alfalfa	-	Kamsack	SK	2015	7.8	3.3	4	2574	1776	798	69	31	20	1.3	13	12	47
Alfalfa	Forage grasses	Melville	SK	2015	8.0	4.0	3	4221	1899	17	45	0.4	14	0.8	10	13	35
Alfalfa	Forage grasses	Melville	SK	2016	8.2	4.1	6	3504	1577 ^b	0 ^b	45 ^b	0 ^b	20	1.3	19	13	41
Alfalfa	Forage grasses	Melville	SK	2016	8.0	3.7	7	3184	1433 ^b	0 ^b	45 ^b	0 ^b	22	1.0	12	11	41
Alfalfa	Forage grasses	Carman	MB	2016	5.6	4.0	17	5740	3214	287	56	5	18	2.2	22	12	77
Red clover	-	Brandon 1	MB	2015	7.6	6.7	3	3826	1798	383	47	10	17	0.9	17	14	40
Red clover	-	Notre Dame	MB	2016	7.5	3.0	3	7321	7175	146	98	2	20	1.7	19	10	192
Red clover	-	St. Claude	MB	2016	7.6	14	5	2580	1445	206	56	8	33	3.0	23	2.0	63
Red clover	-	St. Claude	MB	2016	7.7	17	4	4090	2290	123	56	3	22	2.0	16	10	67
Red clover, hairy vetch	Fall rye	Kenton	MB	2015	8.3	4.6	3	2160	1080	432	50	20	23	11	16	18	24
Red clover, hairy vetch	Fall rye	Kenton	MB	2016	8.0	5.4	3	4520	2983	1175	66	26	18	1.7	19	10	50
Red clover, sweet clover	-	Nesbitt	MB	2015	8.0	4.8	4	3652	2739	913	25	75	21	1.2	20	19	76
Sweet clover	- 1	Austin	MB	2015	8.1	14	9	5583	5136	447	92	8	21	1.8	10	18	144
Sweet clover		Brandon 1	MB	2016	7.0	6.6	3	4040	2101	1939	52	48	21	1.3	18	16	58
Sweet clover	-	Brandon 1	MB	2016	7.6	6.2	3	3704	3074	630	83	17	22	1.5	22	2.4	90
Sweet clover	-	Miami	MB	2016	7.0	4.3	3	6176	5188	988	84	16	24	1.6	19	18	166
Sweet clover	-	Somerset	MB	2015	6.4	4.5	18	1988	954	1034	48	52	15	2.5	19	0.8	18
Fababean	Barley	Brandon 2	MB	2015	7.4	7.0	3	2335	327	1401	14	60	16	1.4	15	19	6
Fababean	Oat	Winkler	MB	2015	8.3	2.7	61	6038	1449	604	24	10	22	3.2	22	16	30
Fababean	Oat, barley	Carman	MB	2016	5.5	3.5	24	5100	1071	714	21	14	21	3.3	26	15	22
Pea	Barley	Brandon 2	MB	2015	8.2	3.8	4	3114	1090	1152	35	37	20	1.2	15	14	21
Pea	Oat	Brandon 2	MB	2016	7.8	6.2	3	5003	2852	1201	57	24	22	1.8	23	2.1	58
Pea	Oat	Nesbitt	MB	2015	7.8	5.7	4	3763	903	1242	24	33	15	1.4	18	19	14
Pea	Oat	Nesbitt	MB	2016	6.9	6.2	5	3648	876	292	24	8	20	2.2	22	11	17
Pea	Oat	Notre Dame	MB	2015	8.0	4.0	7	1736	1163	278	67	16	35	2.6	24	2.3	38
Pea	Oat	Notre Dame	MB	2015	7.5	5.2	5	3362	807	1345	24	40	26	2.5	30	3.1	20
Pea	Oat	Winkler	MB	2015	8.3	3.2	44	6898	1311	414	19	6	27	2.5	22	16	34

P fertilization in organic farming

- Manure / compost readily available to crop
- Feed and hay (mixed farm) eg bale grazing
- Mineral sources rock P (does not work in neutral to alkaline pH soils
- Organic fertilizers bone meal, other biological sources
- Nutrients from the circular economy

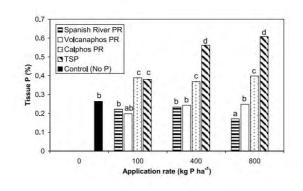
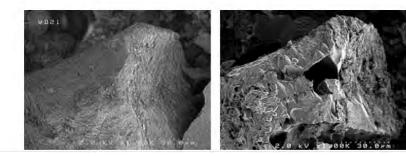
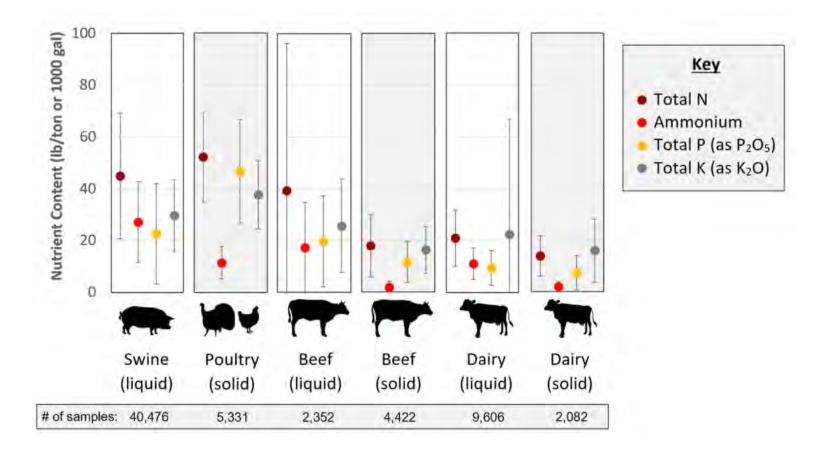




Fig. 1

Table 5. Nutrient Content of Common Animal Manures and Manure Composts

This table includes general estimates of nutrient availability for manures and composts. These can vary widely depending on animal feed, management of grazing, the age of the manure, amount and type of bedding, and many other factors. Manure applications must be done in accordance with NOP 205.203 C.1-3. See page 4.

Production Guide for Organic Snap Beans for Processing. 2012. (A. Seaman, ed.) Cornell University Coop¬erative Extension. 50 p. http://nysipm.cornell.edu/organic_guide/bean.pdf

	Total N	P205	K ₂ O	N1 ¹	N2 ²	P2O5	K ₂ O
	Nutrient	content	bs/ton	Available nut	rients lbs/	ton in firs	t season
Dairy (with bedding)	9	4	10	6	2	3	9
Horse (with bedding)	14	4	14	6	3	3	13
Poultry (with litter)	56	45	34	45	16	36	31
Composted dairy manure	12	12	26	3	2	10	23
Composted poultry manure	17	39	23	6	5	31	21
Pelleted poultry manure ³	80	104	48	40	40	83	43
Swine (no bedding)	10	9	8	8	3	7	7
	Nutrient co	ntent pe	r 1000 gal	Available nutrients	per 1000	gal in first	t season
Swine finishing (liquid)	50	55	25	25*	20 +	44	23
Dairy (liquid)	28	13	25	14*	11*	10	23

1. N1 is an estimate of the total available for plant uptake when manure is incorporated within 12 hours of applications.

2. N2 is an estimate of the total N available for plant uptake when manure is incorporated after 7 days.

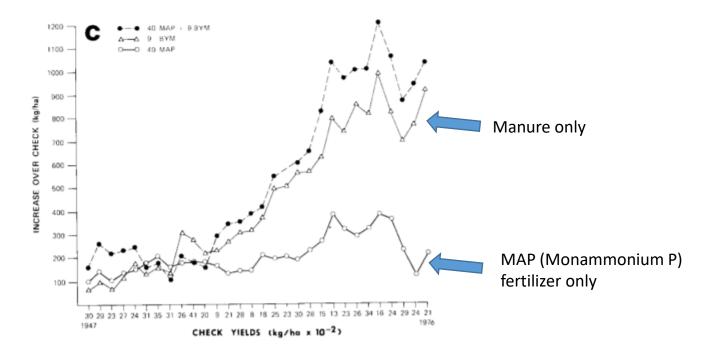
3. Pelletized poultry manure compost.

* injected

+ incorporated

USDA Nutrient-Management-in-Organic-Systems-Western-States-Implementation-Guide.pdf

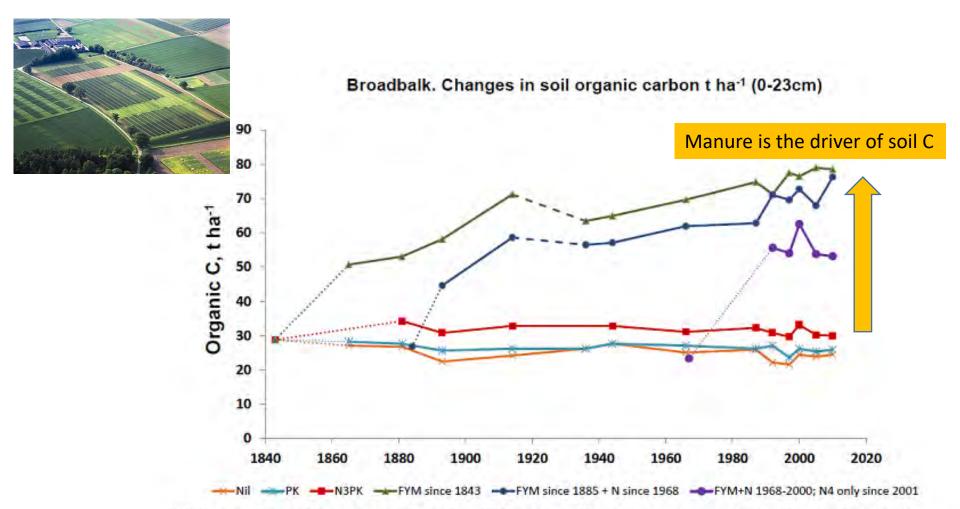
 1000 lb Beef animal produces 9.9 tonne raw manure per year


Crop	N	P	ĸ	S
	Nutrient balance (It	o/ac)	1.	
Green manure pea, lentil or c, vetch 4000 lb/ac @2 5% N	+100	0	0	()
Wheat (30 bu/ac)	-57	-15	-12.6	-3
Flax (14 bu/ac)	-30	-16.5	-9	-3
1		- 7.7		
Long-term balance	+13	-31.5	-19.6	-6

- 9.9 tonne/year x 4.2 P_2O_5 /tonne = 41.5 kg P_2O_5 per 1000 lb beef animal per year
- If you have a P deficiency of 31.5 kg (see above), how much beef manure needed?
 - 31.5 kg per ha/41.5 kg per tonne = 0.75 beef cattle/ha over the rotation
 - That's 0.30 beef cattle/acre over the 3 year rotation.

Manure vs fertilizer – long term study at Indian Head, SK

1. Yield of grain from wheat after fallow when fertilized with MAP and BYM (5-yr averages) at Indian Head


Spratt, E.D. and McIver, R.N., 1979. The effect of continual use of phosphate fertilizer and barnyard manure on yield of wheat and the fertility status of a clay chernozem soil. *Canadian Journal of Soil Science*, *59*(4), pp.451-454.

Soil nutrients after 30 years of manure vs fertilizer as P source

	Soil tests (ppm) [†]							
	1964‡		1977					
Treatments	<u>Р</u>	P	SO4-S	Zn				
Check (0 kg/ha)	11.4	7.3	2.6	0.48				
40 MAP (9.4 kg P/ha)	13.6	10.0	5,3	0.49				
80 MAP (18.9 kg P/ha)	15.7	13.3	4.3	0.53				
9 BYM (19 kg P/ha)	25.8	37.0	10.0	1.20				

Table 2.	Soil tests from agronomy experiments started in 1947; extractable P in 1964 and extractable P, SO ₄ -S and
	Zn in 1977

Manure only 977). Taken from Spratt and McCurdy 1966.

Data includes adjustment for changes in bulk density on FYM treatments. All data is from continuous wheat sections. Starting values for all treatments in 1843 and the later FYM treatments were estimated (......). Decreases between 1914 and 1936 are due to the introduction of regular fallowing in 1926; FYM was not applied in fallow years (----). Updated from Powlson et al, 2012.

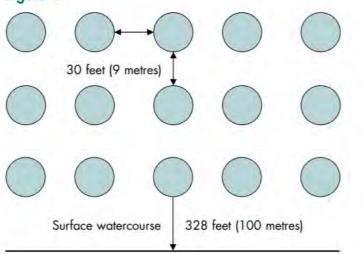
Table 1 Effect of stockpiling on the concentrations of total C, total N, inorganic N and total P and C:N ratios (wet weight basis) of beef cattle manure (adapted from Larney et al. 2006).

Location	Age of Manure	Water %	Total C %	Total N lb/ton	Inorganic N Ib/ton	Total P lb/ton	C:N Ratio
Lethbridge	Fresh	57.1	12.6	14.2	2.4	3.8	17.6
	Stockpiled	45.9	13.2	16.0	4.2	5.0	16.3
Brandon	Fresh	73.1	8.9	8.4	2.6	2.6	21.8
	Stockpiled	68.4	8.0	10.4	3.4	4.0	15.4

 Table 11
 Effect of composting on the concentrations of total C, total N, inorganic N and total P and C:N ratios (wet weight basis) of beef cattle manure (adapted from Larney et al. 2006).

Location	Age of manure	Water %	Total C %	Total N lb/ton	Inorganic N Ib/ton	Total P lb/ton	C:N Ratio
Lethbridge	Fresh	57.1	12.6	14.2	2.4	3.8	17.6
	Compost	33.6	12.6	21.0	1.2	7.4	11.7
Brandon	Fresh	73.1	8.9	8.4	2.6	2.6	21.8
	Compost	38.4	8.2	15.2	0.6	6.0	10.9

https://www.gov .mb.ca/agricultur e/environment/ nutrientmanagement/pu bs/properties-ofmanure.pdf Stockpiling or composting concentrates nutrients in the manure



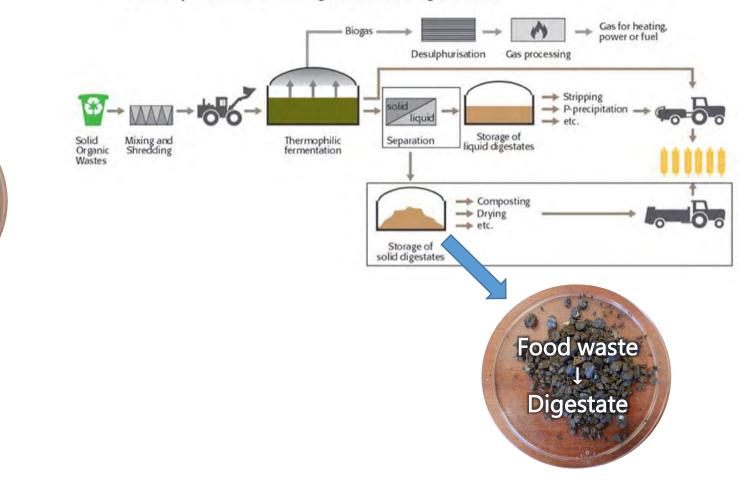
Bales contain high amounts of P, K, S and micronutrients!

Crop	N	P205	K ₂ 0	S	
	· · · · · · · · · · · · · · · · · · ·				
	Crop nutrien	t removal (Ib/I	oushel)		
Wheat 10% protein	1.2	0.5	0.35	0.1	
12%	15	0.5	0.35	0.1	
14%	1,9	0.5	0.35	0.1	
Barley	1.1	0,36	0.35	0.07	
Oat	.96	0.25	0.18	0.06	
Rye	1.22	0.33	0.33	0.22	
Pea	23	07	0.7	0.14	
Flax	2.12	0.6	0.6	0.2	
Sunflower (lb/lb)	0.026	0.008	0.006	0.002	
Alfalfa (lb/ton)	56	15	60	5	
Bromegrass (lb/t)	36	13	59	3	

Figure 1

Material	Nitrogen (% N)	Phosphorus (% P)	Potassium (% K)	
Fish meal or powder	10-11	1.3	<1	
Pelleted chicken manure	2-4	<1	<1	
Processed liquid fish residues	4	<1	<1	
Feather meal	12	0	0	
Seabird and bat guano	9-12	<1-1.75	<1	
Alfalfa meal (Medicago sativa)	4	<1	<1	
Soybean meal (Glycine max)	7	<1	<1	
Bone meal	2	<1	0	
Kelp (order Laminariales)	<1	0	1.7	
Chilean nitrate	16	0	0	
Blood meal	12	0	0	
Meat and bone meal	8	2.2	<1	

Table 1. Common organic nitrogen (N) fertilizer materials and their nutrient analysis.^z

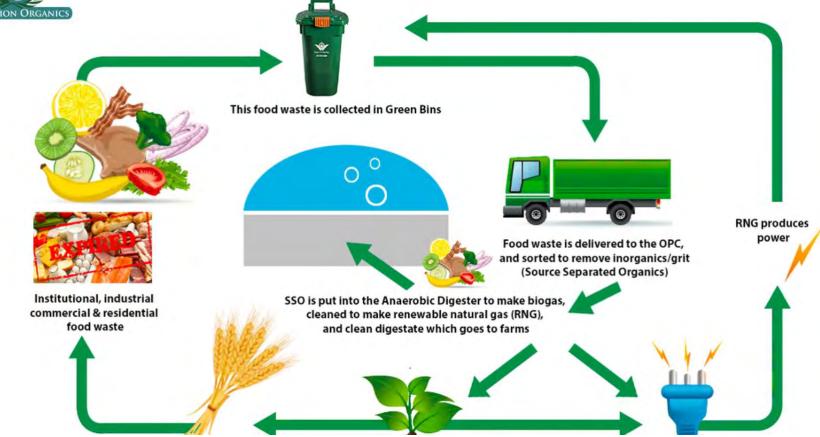

Gaskell, M. and Smith, R., 2007. Nitrogen sources for organic vegetable crops. HortTechnology, 17(4), pp.431-441.

http://www.fertilizer-machines.com/solution/fertilizer-technology/biogas-digestate-compost-fertilizer-produ.html

Food waste

Insect Frass

Standard process for an aerobic digestion of urban organic wastes



Research on alternative P sources in organic agriculture

https://www.coronationorganics.com/operations.html

The Prairie Organic Development Fund is grateful for the support of:

Platinum Sponsors: Grain Millers & SaskWheat Development Commission Silver Sponsors: Nature's Path, The Bauta Family Initiative on Canadian Seed Security & PHS Organics Friend: F.W. Cobs Company

We gratefully acknowledge funding from the Canadian Agricultural Partnership.

www.organicdevelopmentfund.org

To learn more about PODF: www.organicdevelopmentfund.org

For more organic production resources visit: www.pivotandgrow.com